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Schwarzenberger bundles of arbitrary rank on the projective space

Enrique Arrondo

Abstract

We introduce a generalized notion of Schwarzenberger bundle on the projective space. Associated
to this more general definition, we give an ad hoc notion of jumping subspaces of a Steiner
bundle on P

n (which in rank n coincides with the notion of unstable hyperplane introduced by
Vallès, Ancona and Ottaviani). For the set of jumping hyperplanes, we find a sharp bound for
its dimension. We also classify those Steiner bundles whose set of jumping hyperplanes have
maximal dimension and prove that they are generalized Schwarzenberger bundles.

Introduction

In [6], Schwarzenberger constructed some particular vector bundles F of rank n in the projective
space P

n, related to the secant spaces to rational normal curves and having a resolution of the
form

0 −→ OPn(−1)⊕s −→ O⊕t
Pn −→ F −→ 0.

Arbitrary vector bundles on P
n admitting such a resolution and having arbitrary rank

(necessarily at least n) has been widely studied since then. These general bundles were called
Steiner bundles by Dolgachev and Kapranov [3], because of their relation with the classical
Steiner construction of rational normal curves. In that paper, the authors relate some Steiner
bundles of rank n (the so-called logarithmic bundles) to configurations of hyperplanes in P

n.
In fact, to a general configuration of k hyperplanes they assign a Steiner bundle and, if this is
not a Schwarzenberger bundle, there is a Torelli-type result in the sense that the configuration
of hyperplanes can be reconstructed from the bundle (this is proved in [3] only for k � 2n+ 3,
and in general by Vallès [9]).

The result of Vallès and other related results by him and Ancona and Ottaviani (see [1])
are based on considering special hyperplanes associated to Steiner bundles of rank n, the so-
called unstable hyperplanes. In particular, they prove that a Steiner bundle of rank n is one of
those constructed by Dolgachev and Kapranov if and only if it possesses at least t+ 1 unstable
hyperplanes (see [1, Corollary 5.4]) and if it has at least t+ 2 unstable hyperplanes then it is
a Schwarzenberger bundle and the set of unstable hyperplanes forms a rational normal curve
(see [9, Théorème 3.1]). Hence, except in the last case, one recovers the original configuration
of hyperplanes from its corresponding Steiner bundle. On the other hand, it is also true that,
starting from a rational normal curve instead of a finite number of hyperplanes and constructing
its corresponding Schwarzenberger bundle, one can still reconstruct the rational normal curve
from the set of unstable hyperplanes.

The starting point of this paper is the last of the above results, that is, the correspondence
between Schwarzenberger bundles and rational normal curves. First we introduce a generalized
notion of Schwarzenberger bundle, which will be a Steiner bundle (of rank arbitrarily large)
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698 ENRIQUE ARRONDO

obtained from a triplet (X,L,M), where X is any projective variety, and L,M are globally
generated vector bundles on X of respective ranks a and b (see Example 1.5). In this context,
the original vector bundles constructed by Schwarzenberger are those obtained from triplets
in which X = P

1, and L,M are line bundles on P
1. Independently, Vallès in [10] has recently

given a similar definition in the case a = b = 1, assuming that X is a curve, M is very ample
and H1(L⊗M−1) = 0, but he allows L to be just a coherent sheaf (so that F is just a
coherent sheaf, not necessarily locally free). He also generalizes the notion of logarithmic
bundles to arbitrary rank and extends the Torelli-type results for configurations of lines
in P

2.
The first main problem we want to study is the following.

Question 0.1. When is a Steiner bundle a generalized Schwarzenberger bundle?

In order to answer this question, one needs to see whether it is possible to associate a triplet
(X,L,M) to a given Steiner bundle. Following the main ideas in [1, 3, 9], we observe that, for
Schwarzenberger bundles, any point of X yields a special subspace of P

n, which we call (a, b)-
jumping subspace (in fact we will introduce the more natural notion of jumping pair). This
notion generalizes the notion of unstable hyperplane in [1, 9] (with our definition, a jumping
hyperplane is a hyperplane H such that h0(F ∗

|H) > h0(F ∗)), so that we naturally wonder about
the following Torelli-type problem.

Question 0.2. For which triplets (X,L,M) does it happen that all the jumping subspaces
come from points of X?

In this paper, we give a positive answer to Questions 0.1 and 0.2 when a = b = 1 and the set
of jumping subspaces (which in this case are hyperplanes), or more generally the set of jumping
pairs, has maximal dimension. More precisely, when a = b = 1 we first provide a sharp bound
for the dimension of the set of jumping pairs of Steiner bundles (Theorem 2.8). Then we classify
all Steiner bundles for which the set of jumping pairs has maximal dimension, showing that in
all cases they are generalized Schwarzenberger bundles and that the variety X in the triplet is
obtained from the set of jumping pairs (Theorem 3.7).

I want to stress the fact that, despite the apparently abstract notions developed in the paper,
most of the inspiration and techniques come from classical projective geometry (varieties of
minimal degree, Segre varieties, linear projections, etc.).

The paper is structured as follows. In Section 1, we recall the main properties of Steiner
bundles and introduce our generalized notion of Schwarzenberger bundle. We present four
examples of Schwarzenberger bundles and prove (Proposition 1.11) that, in rank n, our
definition coincides with the original Schwarzenberger bundles.

In Section 2, we introduce the notion of (a, b)-jumping subspaces and pairs of a Steiner
bundle. In the particular case a = b = 1, we show (Theorem 2.8) that the set of jumping
pairs has dimension at most t− n− s+ 1 and that, if n = 1 or s = 2, any Steiner bundle is a
Schwarzenberger bundle (thus generalizing to our general context the known result for rank n).

Finally, in Section 3, we classify Steiner vector bundles whose set of jumping pairs has
maximal dimension (Theorem 3.7), showing that, in this case, they are Schwarzenberger
bundles, precisely the examples introduced in Section 1. We include, as a first application
of our theory, an improvement (Corollary 3.9) for line bundles of a result of Re (see [5])
about the multiplication map of sections. We finish with some remarks about the difficulty of
the case of arbitrary a, b, and with some possible generalization of our definition to arbitrary
varieties.
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SCHWARZENBERGER BUNDLES ON THE PROJECTIVE SPACE 699

1. Generalized Schwarzenberger bundles

General notation. We will always work over a fixed algebraically closed ground field k. We
will use the notation that, for a vector space V over k, the projective space P(V ) will be the
set of hyperplanes of V or equivalently the set of lines in the dual vector space V ∗. If v is a
nonzero vector of V ∗, we will write [v] for the point of P(V ) represented by the line 〈v〉 spanned
by v. On the other hand, we will denote by G(r, V ) the Grassmann variety of r-dimensional
subspaces of a vector space V .

Recall first the definition of Steiner bundle, in which we will include for convenience the
invariants of the resolution.

Definition. An (s, t)-Steiner bundle over P
n is a vector bundle F with a resolution

0 −→ S ⊗OPn(−1) −→ T ⊗OPn −→ F −→ 0,

where S and T are vector spaces over k of respective dimensions s and t (observe that the rank
of F is thus t− s).

Remark 1.1. We recall from [3] the geometric interpretation of the resolution of a Steiner
bundle. A morphism OPn(−1) → T ⊗OPn is equivalent to fixing an (n+ 1)-codimensional
linear subspace Λ ⊂ P(T ) and identifying P

n with the set, which we denote by P(T )∗Λ, of
hyperplanes of P(T ) containing Λ. Therefore giving a morphism S ⊗OPn(−1) → T ⊗OPn is
equivalent to fixing s linear subspaces Λ1, . . . ,Λs ⊂ P

t−1 of codimension n+ 1 with a common
parametrization by P

n of the sets P(T )∗Λi
of hyperplanes in P

t−1 containing these Λi. Hence
the projectivization of the fibre of F at any point p ∈ P

n is the linear space P(Fp) ⊂ P(T )
consisting of the intersection of the s hyperplanes of P(T )∗Λ1

, . . . ,P(T )∗Λs
corresponding to p.

We recall in the next lemmas the standard characterization of Steiner bundles by means of
linear algebra, and introduce the notation that we will use throughout the paper.

Lemma 1.2. Given vector spaces S and T over k, the following data are equivalent.

(i) A Steiner bundle F with resolution 0 → S ⊗OPn(−1) → T ⊗OPn → F → 0.
(ii) A linear map ϕ : T ∗ → S∗ ⊗H0(OPn(1)) = Hom(H0(OPn(1))∗, S∗) such that, for any

u ∈ H0(OPn(1))∗ and any v ∈ S∗, there exists f ∈ Hom(H0(OPn(1))∗, S∗) in the image of ϕ
satisfying f(u) = v.

Proof. Taking duals, giving a morphism S ⊗OPn(−1) → T ⊗OPn is equivalent to giving a
morphism

ψ : T ∗ ⊗OPn −→ S∗ ⊗OPn(1) = Hom(OPn(−1), S∗ ⊗OPn)

and this is clearly equivalent to giving linear map

ϕ : T ∗ −→ H0(S∗ ⊗OPn(1)) = S∗ ⊗H0(OPn(1)) = Hom(H0(OPn(1))∗, S∗).

Hence we need to characterize when the morphism ψ induced by ϕ is surjective, that is, when
the fibres of ψ are surjective at any point of P

n. To this purpose, we observe that, for any point
[u] ∈ P

n corresponding to a nonzero vector u ∈ H0(OPn(1))∗, the fibre of ψ at [u] is the linear
map T ∗ → Hom(〈u〉, S∗) consisting of the restriction of ϕ. Hence this map is surjective if and
only if, for any v ∈ S∗, there exists f ∈ Hom(H0(OPn(1))∗, S∗) in the image of ϕ satisfying
f(u) = v. This proves the lemma.
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700 ENRIQUE ARRONDO

Lemma 1.3. With the notation of Lemma 1.2, the following data are equivalent.

(i) A linear subspace K ⊂ T ∗ contained in the kernel of ϕ.
(ii) An epimorphism F → K∗ ⊗OPn .
(iii) A splitting F = FK ⊕ (K∗ ⊗OPn).

In this case, FK is the Steiner bundle corresponding, by Lemma 1.2, to the natural map
T ∗/K → S∗ ⊗H0(OPn(1)). As a consequence, if T ∗

0 is the image of ϕ and F0 is the Steiner
bundle corresponding to the inclusion T ∗

0 → S∗ ⊗H0(OPn(1)), then H0(F ∗
0 ) = 0 and F = F0 ⊕

(T/T0) ⊗OPn . In particular, H0(F ∗) = 0 if and only if ϕ is injective.

Proof. The equivalence of (ii) and (iii) comes from the fact that F is generated by its
global sections. In the situation of (i), we have a map ϕ̄ : T ∗/K → S∗ ⊗H0(OPn(1)) which, by
Lemma 1.2, induces a Steiner bundle FK . We clearly have a commutative diagram

0 0
↓ ↓

0 −→ S ⊗OPn(−1) −→ (T ∗/K)∗ ⊗OPn −→ FK −→ 0
|| ↓ ↓

0 −→ S ⊗OPn(−1) −→ T ⊗OPn −→ F −→ 0
↓ ↓

K∗ ⊗OPn = K∗ ⊗OPn

↓ ↓
0 0

induced by the first two rows, so that the last column yields situation (ii). Reciprocally, given
an epimorphism F → K∗ ⊗OPn , the resolution of F yields another epimorphism T ⊗OPn →
K∗ ⊗OPn , so that we can consider K as a subspace of T ∗. We thus get a diagram as above,
now induced by its last two rows. Dualizing the diagram and taking cohomology, we get that
ϕ : T ∗ → S∗ ⊗H0(OPn(1)) factorizes through T ∗/K, so that K is contained in the kernel of
ϕ, which is situation (i). Observe finally that F0 is nothing but Fker ϕ.

Definition. With the above notation, we will say that a Steiner bundle is reduced if ϕ is
injective, that is, if H0(F ∗) = 0. The Steiner bundle F0 will be called the reduced summand
of F .

Remark 1.4. Observe that, since there are not Steiner bundles on P
n of rank smaller than

n (see, for instance, [3, Proposition 3.9]), any Steiner bundle of rank n must coincide with its
reduced summand, and hence it is reduced. Notice also that the only reduced Steiner bundle
with s = 1 is TPn(−1). This is why we will consider only the cases s � 2.

Our generalized notion of Schwarzenberger bundle will come from the following example, in
which we will use a slightly more general framework.

Example 1.5. Let X be a projective variety and consider two coherent sheaves L and M
on X, and assume L is locally free. If h0(M) = n+ 1, we identify P

n with P(H0(M)∗), the set
of lines in H0(M). Consider the natural composition

H0(L) ⊗OPn(−1) −→ H0(L) ⊗H0(M) ⊗OPn −→ H0(L⊗M) ⊗OPn .

For each nonzero σ ∈ H0(M), the fibre of the above composition at the point [σ] ∈ P
n is

H0(L) ⊗ 〈σ〉 −→ H0(L) ⊗H0(M) −→ H0(L⊗M)
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SCHWARZENBERGER BUNDLES ON THE PROJECTIVE SPACE 701

and, identifying H0(L) ⊗ 〈σ〉 with H0(L), we get that the composition is injective since it can
be identified with H0(L) ·σ−→H0(L⊗M). We thus have a Steiner vector bundle F defined as a
cokernel

0 −→ H0(L) ⊗OPn(−1) −→ H0(L⊗M) ⊗OPn −→ F −→ 0.

Observe that the map ϕ of Lemma 1.2 is, in this case, the dual of the multiplication map
H0(L) ⊗H0(M) → H0(L⊗M). In particular, F is reduced if and only if this multiplication
map is surjective. More generally, according to Lemma 1.3, if W is the image of the
multiplication map, we have F = F0 ⊕ (H0(L⊗M)/W ) ⊗OPn , where F0 is the reduced
summand of F .

Definition. Let X be a projective variety, and let L and M be globally generated vector
bundles on X. The Schwarzenberger bundle of the triplet (X,L,M) will be the Steiner vector
bundle constructed in Example 1.5.

Remark 1.6. By Remark 1.1, the geometry of a Schwarzenberger bundle F when L and
M are line bundles is related to the geometry of the map ϕL⊗M : X → P(H0(L⊗M)) defined
by L⊗M . Indeed, in this case, P

n is identified with the complete linear series |M | of effective
divisors on X. For each D ∈ |M |, Example 1.5 shows that the fibre FD is the cokernel of the
mapH0(L) → H0(L⊗M) defined by a section ofM vanishing atD. Hence the projectivization
P(FD) ⊂ P(H0(L⊗M)) is the linear span of the divisor D regarded as a subset in P(H0(L⊗
M)) via ϕL⊗M . Thus Remark 1.1 is saying that the set of these linear spans can be constructed
by fixing linear subspaces Λ1, . . . ,Λs ⊂ P(H0(L⊗M)), defining common parametrizations of
the P(H0(L⊗M))∗Λi

and taking the intersection of corresponding hyperplanes.
Therefore, when considering only Schwarzenberger bundles coming from line bundles,

Question 0.1 can be stated geometrically as follows. Given s linear subspaces Λ1, . . . ,Λs ⊂
P(T ) of codimension n+ 1 such that the P(T )∗Λi

are parametrized by the same P
n, do the

intersections of the corresponding hyperplanes describe the span of the divisors of some
complete linear system of a variety?

We give now four representative examples of Schwarzenberger bundles.

Example 1.7. When (X,L,M) = (P1,OP1(s− 1),OP1(n)), one obtains an (s, s+ n)-
Steiner bundle of rank n, which is precisely the vector bundle constructed by Schwarzenberger.
If n = 1, then Remark 1.1 provides, for any (s, s+ 1)-Steiner bundle, the classical Steiner
construction of the rational normal curve in P

s, so that the answer to Question 0.1 is
positive. On the other hand, as can be found, for example, in [1] or [9], if s = 2, then any
(2, n+ 2)-Steiner bundle is a Schwarzenberger bundle, while if s > 2 and n > 1, then a general
(s, s+ n)-Steiner bundle is not a Schwarzenberger bundle.

Example 1.8. Let F =
⊕t−s

i=1 OP1(ai) with ai � 1 for i = 1, . . . , t− s, and assume degF =
a1 + . . .+ at−s = s. Write X = P(F ) and let OX(h) denote the tautological quotient line
bundle (equivalently, X is a smooth rational normal scroll X ⊂ P

t−1 of dimension t− s and
degree s). If f is the class of a fibre of the scroll, the positivity of the ai implies that
L := OX(h− f) is globally generated. Then, if M = OX(f), the Schwarzenberger bundle of
(X,L,M) is an (s, t)-Steiner bundle on P

1. By the geometric interpretation given in Remark 1.6,
the fibre of this Schwarzenberger bundle at any point of P

1 is nothing but the corresponding
fibre of the scroll X. Therefore, this Schwarzenberger bundle is precisely the original F . This
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702 ENRIQUE ARRONDO

shows that any ample vector bundle on P
1 is a Schwarzenberger bundle. Observe that F can

also be regarded as the Schwarzenberger bundle of the triplet (P1, F (−1),OP1(1)).

We consider next the symmetric example with respect to the previous one, by just permuting
L and M . Observe that, even if this permutation produces different vector bundles (in fact
defined on different projective spaces), most of our results on Steiner bundles will keep some
symmetry of this type (for example, in Theorem 2.8 the roles of n+ 1 and s are symmetric).
As the referee remarked to us, this symmetry is the so-called Gale transform.

Example 1.9. Let X be a smooth rational normal scroll X ⊂ P
t−1 of dimension t− n− 1

and degree n+ 1 defined by E =
⊕t−n−1

i=1 OP1(ai), so that ai � 1 for i = 1, . . . , t− n+ 1 and
∑t−n+1

i=1 ai = n+ 1. Let h and f denote, respectively, the class of a hyperplane and a fibre of the
scroll. Then, if L = OX(f) and M = OX(h− f), the Schwarzenberger bundle F of (X,L,M) is
a (2, t)-Steiner bundle. We will see in Theorem 2.8(iv) that in this case any (2, t)-Steiner bundle
is obtained in this way (the case t = n+ 2 is exactly the case s = 2 of Example 1.7). As before,
F can also be regarded as the Schwarzenberger bundle of the triplet (P1,OP1(1), E(−1)).

Example 1.10. The Schwarzenberger bundle of the triplet (P2,OP2(1),OP2(1)) is a (3, 6)-
Steiner bundle F of rank 3 over P

2. If we identify this last P
2 with the set of conics of the

Veronese surface V ⊂ P
5, then the projectivization of the fibre of F at the element of P

2

corresponding to a conic C ⊂ V gives the plane of P
5 spanned by C. In fact, it follows that

F = S2(TP2(−1)) (see [2, p. 615]), so that F|L = OL ⊕OL(1) ⊕OL(2) for any line L ⊂ P
2. We

will see in Remark 2.6 that a general (3, 6)-Steiner bundle is not obtained in this way.

We end this section by reformulating in terms of our generalized Schwarzenberger bundles
the results of Re about the multiplication map for vector bundles (we will improve his
results in Corollary 3.9 in the case of rank 1). This will imply in particular that our
generalized Schwarzenberger bundles of rank n are exactly those constructed originally by
Schwarzenberger:

Proposition 1.11. Let F be an (s, t)-Steiner bundle on P
n that is the Schwarzenberger

bundle of a triplet (X,L,M), with rk(L) = a and rk(M) = b. Then we have the following.

(i) t � bs+ a(n+ 1) − ab.
(ii) If equality holds in (i), then F is the Schwarzenberger bundle of a triplet (P1, L,M),

where deg(L) = s− a and deg(M) = n+ 1 − b.
(iii) Any Schwarzenberger bundle of rank n is as in Example 1.7.

Proof. By [5, Theorem 1] we have h0(L⊗M) � bh0(L) + ah0(M) − ab, which is inequality
(i). Moreover, Theorem 2 of [5] says that, when the above inequality is an equality, then
there exist a map f : X → P

1 and vector bundles L′ and M ′ on P
1 such that L = f∗L′,

H0(L) = f∗H0(L′), M = f∗M ′ and H0(M) = f∗H0(M ′). This means that F is also the
Schwarzenberger bundle of the triplet (P1, L′,M ′). This proves (ii), since the Riemann–Roch
theorem for vector bundles on P

1 implies s = deg(L′) + a and n+ 1 = deg(M ′) + b.
In order to prove (iii), observe that F has rank n if and only if t = h0(L⊗M) = h0(L) +

h0(M) − 1. Since L and M are globally generated, it follows that h0(L) � a and h0(M) � b.
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SCHWARZENBERGER BUNDLES ON THE PROJECTIVE SPACE 703

Therefore

t− bs− a(n+ 1) + ab = (h0(L) + h0(M) − 1) − bh0(L) − ah0(M) + ab

= −(b− 1)h0(L) − (a− 1)h0(M) + ab− 1
� (b− 1)a+ (a− 1)b+ ab− 1 = −(a− 1)(b− 1) � 0.

By (i) we have that all inequalities are equalities and in particular a = b = 1, and by (ii) we
also have that F is the Schwarzenberger bundle of a triplet (P1, L,M), where L and M are
line bundles on P

1 of respective degrees s− 1 and n, from which the result follows.

2. Jumping subspaces of Steiner bundles

In order to answer Question 0.1, one needs to try to produce a triplet (X,L,M) from a Steiner
bundle F . The main idea to find a candidate for X comes from the fact that, since M is a
globally generated vector bundle of rank b, any point x ∈ X yields a b-codimensional subspace
H0(M ⊗ Jx) ⊂ H0(M) consisting of the sections ofM vanishing at x. Thus the points ofX give
particular linear subspaces of codimension b in the projective space P

n = P(H0(M)∗) on which
the Schwarzenberger bundle is defined. Hence our goal is to look for some special property of
these linear subspaces for Schwarzenberger bundles and see whether, for an arbitrary Steiner
bundle, the set of subspaces satisfying that property could play the role of X. This is the scope
of the following.

Lemma 2.1. Let F be a Steiner bundle over P
n. Then we have the following.

(i) For any nonempty linear subspace Λ ⊂ P
n, there is a canonical commutative diagram

S∗ ⊗H0(JΛ(1))
∼=−→ H1(F ∗ ⊗ JΛ)

↓
⏐
⏐
�φ

T ∗ ϕ−→ S∗ ⊗H0(OPn(1)) −→ H1(F ∗) −→ 0.

(ii) If F is the Schwarzenberger bundle of the triplet (X,L,M) and Λ ⊂ P
n is the subspace

corresponding to H0(M ⊗ Jx) ⊂ H0(M) for some x ∈ X, then there exists an a-dimensional
linear subspace A ⊂ S∗ such that A⊗H0(JΛ(1)) is in the kernel of φ.

Proof. Diagram (i) comes by taking cohomology in the dual of the resolution of F and its
twist by JΛ. For (ii), if F is the Schwarzenberger bundle of the triplet (X,L,M), we have

H0(OPn(1)) = H0(M)∗, S = H0(L), T = H0(L⊗M)

and ϕ is the dual of the multiplication map H0(L) ⊗H0(M) → H0(L⊗M). Moreover, if Λ
is the linear subspace corresponding to H0(M ⊗ Jx) ⊂ H0(M), for some x ∈ X, we also have
H0(JΛ(1)) = H0(Mx)∗. It is clear that ϕ maps H0(Lx ⊗Mx)∗ isomorphically to H0(Lx)∗ ⊗
H0(Mx)∗. Hence, it follows that H0(Lx)∗ ⊗H0(JΛ(1)) is mapped to zero in H1(F ∗).

This suggests the following definition.

Definition. Let F be a Steiner bundle over P
n. An (a, b)-jumping subspace of F is a b-

codimension subspace Λ ⊂ P
n satisfying that, with the identification given in (1), there exists an

a-dimensional linear subspace A ⊂ S∗ such that A⊗H0(JΛ(1)) is in the kernel of the natural
map H1(F ∗ ⊗ JΛ) → H1(F ∗). The pair (A,Λ) will be called (a, b)-jumping pair of F . We will
write Ja,b(F ) and J̃a,b(F ) to denote, respectively, the set of (a, b)-jumping subspaces and the set
of (a, b)-jumping pairs of F . We will also write Σa,b(F ) to denote the set of subspaces A ⊂ S∗
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704 ENRIQUE ARRONDO

for which there exists a b-codimensional subspace Λ ⊂ P
n such that (A,Λ) is an (a, b)-jumping

subspace of F . A (1, 1)-jumping subspace or (1, 1)-jumping pair is called simply a jumping
hyperplane or jumping pair, respectively, and we just write J(F ) or J̃(F ) to denote the set of
jumping hyperplanes or jumping pairs of F , respectively. Similarly we write Σ(F ) := Σ1,1(F ).

We prove next a series of easy properties of jumping spaces and pairs.

Lemma 2.2. Let F be a Steiner bundle over P
n. Then the following hold.

(i) For any a, b, the set of (a, b)-jumping pairs of F coincides with the set of (a, b)-jumping
pairs of its reduced summand F0. In particular, Ja,b(F ) = Ja,b(F0) and Σa,b(F ) = Σa,b(F0).

(ii) If A ⊂ S∗ is a linear subspace of dimension a and Λ ⊂ P
n is a subspace of codimension b,

then (A,Λ) is an (a, b)-jumping pair of F if and only if A⊗H0(JΛ(1)) is in the image T ∗
0 of

ϕ : T ∗ → S∗ ⊗H0(OPn(1)).
(iii) Any (a, b)-jumping pair (A,Λ) of F induces, in a canonical way, a split quotient F0|Λ →

A∗ ⊗H0(JΛ(1))∗ ⊗OΛ.
(iv) If b = 1, then a hyperplane H ⊂ P

n is an (a, 1)-jumping subspace if and only if there is
a quotient F0|H → O⊕a

H , that is, h0(F ∗
|H) � h0(F ∗) + a.

Proof. Part (i) is obvious from the splitting (see Lemma 1.3) F = F0 ⊕ (T/T0) ⊗OPn , so
that the maps H1(F ∗ ⊗ JΛ) → H1(F ∗) and H1(F ∗

0 ⊗ JΛ) → H1(F ∗
0 ) are the same for any

subspace Λ. Part (ii) follows at once from Lemma 2.1(i).
To prove (iii), let (A,Λ) be a jumping pair of F . By (ii), this means that A⊗H0(JΛ(1))

can be regarded as a subspace of T ∗
0 . On the other hand, recall that F0 is the Steiner bundle

constructed (see Lemma 1.2) from the inclusion T ∗
0 → S∗ ⊗H0(OPn(1)). It is clear that F0|Λ

is the Steiner bundle constructed from the composition

T ∗
0 −→ S∗ ⊗H0(OPn(1)) −→ S∗ ⊗H0(OΛ(1))

and, since A⊗H0(JΛ(1)) is contained in its kernel, Lemma 1.3 gives the wanted split quotient.
Finally, the ‘only if’ part of (iv) is (iii). Reciprocally, assume that there is a quotient F0|H →

O⊕a
H for some hyperplaneH ⊂ P

n, which is equivalent, by the splitting F = F0 ⊕ (T/T0) ⊗OPn ,
to the inequality h0(F ∗

|H) � h0(F ∗) + a. From the exact sequence

0 = H0(F ∗ ⊗ JH) −→ H0(F ∗) −→ H0(F ∗
|H) −→ H1(F ∗ ⊗ JH) −→ H1(F ∗)

we get that the kernel of φ : H1(F ∗ ⊗ JH) → H1(F ∗) has dimension at least a. This kernel,
regarded as a subspace of S∗ ⊗H0(JH(1)) (see Lemma 2.1(i)), is necessarily of the form
A⊗H0(JH(1)), because H0(JH(1)) has dimension 1. Therefore, (A,H) is an (a, 1)-jumping
pair and H is an (a, 1)-jumping hyperplane.

Remark 2.3. Since Steiner bundles of rank n are reduced (see Remark 1.4), part (iv) of
Lemma 2.2 says that a jumping hyperplane H is characterized by the condition H0(F ∗

|H) 
= 0.
This is why in [1, 9] is used the name ‘unstable hyperplane’, although in our general context
we preferred the word ‘jumping’. Observe that part (iii) implies that, if Λ is an (a, b)-jumping
subspace of F , then h0(F ∗

|Λ) � h0(F ∗) + ab. However, the converse is not true, and the proof
of (iv) does not work if b > 1, since an ab-dimensional kernel of H1(F ∗ ⊗ JΛ) → H1(F ∗) is not
necessarily of the form A⊗H0(JΛ(1)). However, one could characterize (a, b)-jumping pairs
(A,Λ) by the property that, for any hyperplane H ⊃ Λ, the pair (A,H) is an (a, 1)-jumping
pair or, similarly, that for any hyperplane H ⊃ Λ and any line A′ ⊂ A the pair (A′,H) is a
jumping pair.
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The reader should notice however that, when b = n− 1, our notion of jumping hyperplane
does not coincide with the standard notion of jumping line of a vector bundle in the projective
space, even if n = 2 (that is, b = 1). For instance, the Steiner bundle F = S2(TP2(−1)) of
Example 1.10 is uniform, and even homogeneous, so that it has no jumping lines (in the
standard sense), while any line L ⊂ P

2 is a jumping hyperplane (in our sense) because F|L has
always a trivial summand.

We can give a geometric construction of the sets of the (a, b)-jumping subspaces and pairs,
which endows them with a natural structure of algebraic sets (when a = b = 1, this is the
natural generalization of the construction given in [1, § 3] for Steiner bundles of rank n). This
also allows to show that, when these sets satisfy certain conditions of linear normality, the
answer to Question 0.1 is positive.

Lemma 2.4. Let F be a Steiner bundle over P
n and let T ∗

0 ⊂ S∗ ⊗H0(OPn(1)) be the
image of ϕ. Consider the natural generalized Segre embedding

ν : G(a, S∗) ×G(b,H0(OPn(1))) −→ G(ab, S∗ ⊗H0(OPn(1)))

(given by the tensor product of subspaces) and identify G(b,H0(OPn(1))) with the Grassmann
variety of subspaces of codimension b in P

n. Then we have the following.

(i) The set J̃a,b(F ) of jumping pairs of F is the intersection of the image of ν with the
subset G(ab, T ∗

0 ) ⊂ G(ab, S∗ ⊗H0(OPn(1))).
(ii) If π1, π2 are the respective projections from J̃a,b(F ) to G(a, S∗) and G(b,H0(OPn(1))),

then Σa,b(F ) = π1(J̃a,b(F )) and Ja,b(F ) = π2(J̃a,b(F )).
(iii) Let A,B,Q be the universal quotient bundles of respective ranks a, b, ab of G(a, S∗),

G(b,H0(OPn(1))) and G(ab, T ∗
0 ). Assume that the natural maps

α : H0(G(a, S∗),A) −→ H0(J̃a,b(F ), π∗
1A),

β : H0(G(b,H0(OPn(1))),B) −→ H0(J̃a,b(F ), π∗
2B),

γ : H0(G(ab, T ′
0
∗),Q) −→ H0(J̃a,b(F ),Q|J̃a,b(F ))

are isomorphisms. Then the reduced summand F0 of F is the Schwarzenberger bundle of the
triplet (J̃a,b(F ), π∗

1A, π∗
2B).

Proof. Part (i) comes immediately from Lemma 2.2(ii), while part (ii) comes from the
definition of Σa,b(F ) and Ja,b(F ).

For part (iii), observe that there is a commutative diagram

S ⊗H0(OPn(1))∗ −→ T ′
0

↓ ↓
H0(J̃a,b(F ), π∗

1A) ⊗H0(J̃a,b(F ), π∗
2B) −→ H0(J̃a,b(F ), π∗

1A⊗ π∗
2B)

in which we have the following.
(i) The top map is the dual of the inclusion T ′

0
∗ → S∗ ⊗H0(OPn(1)), which is naturally

identified with the map

H0(G(a, S∗),A) ⊗H0(G(b,H0(OPn(1)),B) −→ H0(G(ab, T ′
0
∗),Q)

consisting of the restriction from G(ab, S∗ ⊗H0(OPn(1))) to G(ab, T ′
0
∗) of the sections of the

universal quotient bundle of rank ab.
(ii) The vertical maps are, with the above identifications, α⊗ β and γ, so that they are

isomorphisms by hypothesis.
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(iii) The bottom map is the multiplication map whose dual, by Example 1.5, defines (in the
sense of Lemma 1.2) the Schwarzenberger bundle of the triplet (J̃a,b(F ), π∗

1A, π∗
2B).

Since the dual of the top map is the one defining (in the sense of Lemma 1.2), the bundle F0,
part (iii) follows from the vertical isomorphisms.

Example 2.5. We illustrate the above situation in the case a = b = 1, the one on which
we will concentrate in this paper. In this case, J̃(F ) is the intersection of the Segre variety
P(S) × P

n∗ with the projective space P(T0). The conditions of Lemma 2.4(iii) are the linear
normality and nondegeneracy, respectively, of J̃(F ) in P(T0), of Σ(F ) in P(S), and of J(F ) in
P

n∗. Using the standard properties of the classical Segre embedding, we will have the following
properties that we will use frequently:

(i) The set J̃(F ) is cut out by quadrics.
(ii) The fibres of π1, π2 are linear subspaces of P(T0).
(iii) Any linear subspace of J̃(F ) is contained in a fibre of π1 or π2.
Depending on the context, we will regard J̃(F ) as a subvariety of the projective space P(T0)

or as a subvariety of the product P(S) × P
n∗. It will be useful to observe that the relation

among these two points of view is that the hyperplane section of J̃(F ) as a subvariety of P(T0)
is π∗

1OP(S)(1) ⊗ π∗
2OPn∗(1), where π1, π2 are the projections to P(S) and P

n∗.

Remark 2.6. Observe that, in general, one should not expect the hypothesis of
Lemma 2.4(iii) to hold. This is because the condition (ii) in Lemma 1.2 is open in the set
of linear maps ϕ : T ∗ → S∗ ⊗H0(OPn(1)). Hence a general ϕ will produce a Steiner bundle,
which will also be reduced. Since G(a, S∗) ×G(b,H0(OPn(1))) tends to have a big codimension
in G(ab, S∗ ⊗H0(OPn(1))), one should expect its intersection with a general G(ab, T ∗) to be
very small, and in general empty. Therefore, for arbitrary big values of s, t, a, b, the set J̃a,b(F )
is expected to be empty, that is, a general Steiner bundle will not have jumping (a, b)-subspaces.

For example, if s = 3, t = n+ 4, a general (3, n+ 4)-Steiner bundle on P
n does not have

jumping hyperplanes when n � 4, since the Segre variety P
2 × P

n has codimension 2n in P
3n+2,

so its intersection with a general linear space of dimension n+ 3 is empty. This also shows that,
for n = 2, the set of jumping pairs of a general F is a curve in P

2, so that F cannot be the
Schwarzenberger bundle of the triplet (P2,OP2(1),OP2(1)) (see Example 1.10). However, we
will see in Theorem 2.8(iv) that, when s = 2, the expected dimension of the set of jumping
pairs is ‘the right one’.

Our goal now is to see that the hypothesis of Lemma 2.4(iii) holds if F has ‘many’ jumping
pairs. The first thing we will need to do is to understand how big the dimension of J̃(F ) can
be. By Example 2.5, we need to study how the Segre variety can intersect linear subspaces of
given dimension. To do so, we need a technical result of linear algebra (in which it is crucial
that the ground field is algebraically closed), which we state as a separate lemma. Even if we
are going to use it only for a = b = 1, we include the general statement, since the general proof
does not add any difficulty and since we hope that it could be useful in a future work.

Lemma 2.7. Let U, V be two vector spaces of respective dimensions r, s over the alge-
braically closed field k. Fix nonzero subspaces B ⊂ U of codimension b < r and A ⊂ V of
dimension a < s. Let W be a t-dimensional linear space of Hom(U, V ) such that for any u ∈ U
and any v ∈ V there exists f ∈W such that f(u) = v. Then

dim{f ∈W | f(B) ⊂ A} � t− r − s+ a+ b+ 1.
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Proof. We take any basis v1, . . . , vs of V such that v1, . . . , va ∈ A and pick also any nonzero
vector u1 ∈ B. By assumption, there exist linear maps ga+1, . . . , gs in W such that gi(u1) = vi

for i = a+ 1, . . . , s.
Let us construct next, for i = 2, . . . , r − b, vectors u1, . . . , ui ∈ B and maps h2, . . . , hi ∈W

such that

hi(ui) 
∈ 〈v1, . . . , va, ga+1(ui), . . . , gs(ui), h2(ui), . . . , hi−1(ui)〉 for i = 2, . . . , r − b.

We do it by iteration, so we can assume that we have already constructed u1, . . . , ui−1

and h2, . . . , hi−1. Take any u′i ∈ B \ 〈u1, . . . , ui−1〉 (we can do so because i− 1 � r − b− 1 <
dimB). For any λ1, . . . , λi, consider the vectors

v1, . . . , va, ga+1(λ1u1 + . . .+ λi−1ui−1 + λiu
′
i), . . . , gs(λ1u1 + . . .+ λi−1ui−1 + λiu

′
i),

h2(λ1u1 + . . .+ λi−1ui−1 + λiu
′
i), . . . , hi−1(λ1u1 + . . .+ λi−1ui−1 + λiu

′
i)

and the (s+ i− 2) × s matrix given by their coordinates with respect to v1 . . . , vs. This matrix
will have no maximal rank if and only if the (s− a+ i− 2) × (s− a) submatrix obtained by
removing the first a rows and columns has no maximal rank. The assumption s > a implies that
this submatrix is not vacuous, and since its entries are linear forms in λ1, . . . , λi and the ground
field is algebraically closed, there exists some nonzero solution λ1, . . . , λi for which the subma-
trix has not maximal rank. We take ui = λ1u1 + . . .+ λi−1ui−1 + λiu

′
i for some nonzero solu-

tion as above. Hence there exists v ∈ V \ 〈v1, . . . , va, ga+1(ui), . . . , gs(ui), h2(ui), . . . , hi−1(ui)〉.
We thus take hi ∈W such that hi(ui) = v, which completes the iteration process.

Assume that we know that ga+1, . . . , gs, h2, . . . , hr−b ∈W are linearly independent modulo
{f ∈W | f(B) ⊂ A}. This would imply that, inside the vector space W , the subspace
{f ∈W | f(B) ⊂ A} has zero intersection with the (r + s− a− b− 1)-dimensional subspace
generated by ga+1, . . . , gs, h2, . . . , hr−b. We would get then the wanted inequality.

We are thus left to prove that ga+1, . . . , gs, h2, . . . , hr−b ∈W are linearly independent modulo
{f ∈W | f(B) ⊂ A}. Assume that we have some linear combination

f := μa+1ga+1 + . . .+ μsgs + ν2h2 + . . .+ νr−bhr−b

such that f(B) ⊂ A = 〈v1, . . . , va〉. Applying both terms to ur−b, we get

νr−bhr−b(ur−b) ∈ 〈v1, . . . , va, ga+1(ur−b), . . . , gs(ur−b), h2(ur−b), . . . , hr−b−1(ur−b)〉,
which implies νr−b = 0, by our choice of ur−b. Knowing this vanishing, we consider now
f(ur−b−1) and get νr−b−1 = 0 in the same way, and iterating we get ν2 = . . . = νr−b = 0. We
thus have f(u1) = μa+1va+1 + . . .+ μsvs, which implies now μa+1, . . . , μs = 0 since f(u1) ∈
〈v1, . . . , va〉.

We can now give, for a = b = 1, an upper bound for the dimension of the set of jumping
pairs. Since Lemma 2.4 gives J(F ) = π2(J̃(F )), the same bound will hold for the dimension of
the set of jumping hyperplanes. Observe that our bound is sharp, because it is achieved in the
cases of Examples 1.7–1.10 (since at least the points of X provide jumping pairs).

Theorem 2.8. Let F be an (s, t)-Steiner bundle on P
n with s � 2. Then we have the

following.
(i) The embedded Zariski tangent space at any point of J̃(F ) has dimension at most t−

n− s+ 1; in particular, dim J̃(F ) � t− n− s+ 1.
(ii) If J̃ ⊂ P(S) × P

n∗ is a component of J̃(F ) such that its projection to P(S) or P
n∗ is

constant, then dim J̃ < t− n− s+ 1.
(iii) If J̃(F ) has dimension t− n− s+ 1, then F is reduced and J̃(F ) is smooth at the points

of any of its irreducible components of maximal dimension.
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(iv) If s = 2 and F is reduced, then J̃(F ) is a rational normal scroll of dimension t− n− 1
(and degree n+ 1) and F is the Schwarzenberger bundle of Example 1.9.

(v) If n = 1 and F is reduced, then J̃(F ) is a rational normal scroll of dimension t− s (and
degree s) and F is the Schwarzenberger bundle of Example 1.8.

Proof. To prove (i), we identify P(S ⊗H0(OPn(1))∗) with the set of nonzero linear maps
(up to multiplication by a constant) H0(OPn(1))∗ → S∗. Then the Segre variety corresponds
to maps of rank 1, while P(T0) corresponds to the subspace T ∗

0 ⊂ Hom(H0(OPn(1))∗, S∗) of
Lemma 1.3. Fix any point (α,H) ∈ J̃(F ) ⊂ P(S) × P

n∗. As a point in P(S ⊗H0(OPn(1))∗), it is
represented by a linear mapH0(OPn(1))∗ → S∗ whose kernel is a hyperplane �H ⊂ H0(OPn(1))∗

definingH and whose image is a line A ⊂ S∗ representing α. The embedded tangent space to the
Segre variety at (α,H) corresponds then to the subspace of linear maps f : H0(OPn(1))∗ → S∗

such that f( �H) ⊂ A (see, for instance, [4, Example 14.16]). Since J̃(F ) is the intersection of
the Segre variety with P(T0), it follows that its embedded tangent space at (α,H) corresponds
to the subspace of linear maps f ∈ T ∗

0 such that f( �H) ⊂ A. By Lemma 2.7 (whose hypotheses
are satisfied by Lemma 1.2), this subspace has dimension at most t0 − (n+ 1) − s+ 3, where
t0 = dimT0. Since t0 � t, it follows that the dimension of the embedded Zariski tangent space
of J̃(F ) at (α,H) is at most t− n− s+ 1, which completes the proof of (i).

In order to prove (ii), assume first that the image of J̃ in P(S) is a point corresponding
to a line A ⊂ S∗. Then the embedded tangent space at any point of J̃ is contained in
the subspace corresponding to the linear maps f ∈ T ∗

0 such that f(H0(OPn(1))∗) ⊂ A. By
Lemma 2.7 (taking B = H0(OPn(1))∗), we get, arguing as in (i), that the embedded tangent
space would have dimension at most t− n− s, as wanted. If instead the image of J̃ in P

n∗

is an element corresponding to a hyperplane B ⊂ H0(OPn(1))∗, we proceed in the same way:
now the embedded tangent space of J̃ is contained in the subspace corresponding to the linear
maps f ∈ T ∗

0 such that f(B) = 0, and we use Lemma 2.7 taking A = 0.
To prove (iii), assume that we have dim J̃(F ) = t− n− s+ 1. Hence in the proof of (i) all

inequalities are equalities. In particular t0 = t, so that F is reduced. On the other hand, for any
component of J̃(F ) of dimension t− n− s+ 1, the dimension of its embedded tangent space
at any point cannot exceed t− n− s+ 1, by (i), so that all the points of that component are
smooth.

Assume now s = 2 in order to prove (iv). In this case P(S) × P
n∗ has codimension n in

P(S ⊗H0(OPn(1))∗), so that its intersection with P(T ) has dimension at least t− 1 − n.
By (iii), it follows that J̃(F ) is a smooth complete intersection of P(S) × P

n∗ and P(T ),
that is, a smooth rational normal scroll J̃(F ) ⊂ P(T ) of dimension t− n− 1, so that we
can make the identification T = H0(OJ̃(F )(h)), where h is the hyperplane section class
of the scroll. It also follows from (ii) that the projection π1 : J̃(F ) → P(S) = P

1 is not
constant, hence it is surjective. Therefore all the fibres of π1 (which are linear spaces, by
Example 2.5(ii)) have dimension t− n− 2, so that π1 gives the scroll structure on J̃(F ).
We can thus identify S = H0(OJ̃(F )(f)), where f is the class of a fibre of the scroll and,
as pointed out in Example 2.5, the map from J̃(F ) to P

n∗ is given by OJ̃(F )(h− f). In
order to complete the proof of (iv) we need to show, by Lemma 2.4(iii), that we can identify
H0(OPn(1))∗ = H0(OJ̃(F )(h− f)). This identification comes from the fact that the restriction
mapH0(OP(S)×Pn∗(0, 1)) → H0(OJ̃(F )(h− f)) is an isomorphism because J̃(F ) is the complete
intersection of P(S) × P

n∗ and a linear space.
Finally, (v) was proved in Example 1.8 (observe that a Steiner bundle on P

1 is reduced if
and only if it is ample), although the same proof as in (iv) holds.

Remark 2.9. Observe that part (iv) of Theorem 2.8 is giving more information about
Example 1.9. Indeed our proof shows that we have X = J̃(F ), even with the scheme structure
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of J̃(F ) as intersection of the Segre variety and a linear space, and shows in particular that any
jumping hyperplane of F is coming from a point of X. Hence, for the Schwarzenberger bundles
of Example 1.9, we get a positive answer to Question 0.2 (the same holds for Example 1.8).
Incidentally, observe that, in this example, the set of jumping hyperplanes has not always
maximal dimension t− n− 1. This is because J(F ) is the image of the rational normal scroll
X via OX(h− f), which drops dimension if (and only if) X is the Segre variety P

1 × P
n

(which is equivalent to saying t = 2n+ 2), in which OX(h− f) induces the projection onto P
n.

In particular, in this last case, all the hyperplanes are jumping hyperplanes. We also remark
that, as pointed out by the referee, parts (iv) and (v) of Theorem 2.8 are well known in the
language of Kronecker canonical forms, although we kept our proofs for the sake of uniformity
of the exposition.

Observe also that, in general, the answer to Question 0.2 can be negative. For example,
if X is an elliptic curve and L,M are line bundles on X of respective degrees 2 and n+ 1,
the Schwarzenberger bundle of the triplet (X,L,M) is a (2, n+ 3)-Steiner bundle F . However,
Theorem 2.8(iv) implies that J̃(F ) and J(F ) are rational normal scrolls of dimension 2 instead
of just the original elliptic curve X (it can be seen that these scrolls consist of the union of the
lines spanned by the pairs of points ofX given by the divisors in the linear system defined by L).

3. Steiner bundles with jumping locus of maximal dimension

In this section we will characterize (s, t)-Steiner bundles for which J̃(F ) has the maximal
dimension t− n− s+ 1, showing that they are exactly Examples 1.7–1.10 (hence we give a
positive answer to Question 0.1 in this case). When the maximal dimension is 1 (that is, when
t = n+ s or, equivalently, F has rank n), we recover the known result that Steiner bundles of
rank n with a curve of jumping hyperplanes are precisely the classical Schwarzenberger bundles
(see [9]).

The main idea, borrowed from the case of rank n, will be to produce, from a given (s, t)-
Steiner bundle, an (s− 1, t− 1)-Steiner bundle (thus with the same rank as F ) with essentially
the same jumping hyperplanes. Then, after an iteration, we will eventually arrive at a Steiner
bundle with s = 2 to which we can apply Theorem 2.8(iv). Analogously, we will produce an
(s, t− 1)-Steiner bundle on a (jumping) hyperplane, and eventually arrive at a Steiner bundle
on P

1 to which we can apply Theorem 2.8(v) (we will omit the details of this second iteration,
stating the results we will need in Remark 3.5).

The starting point is the following (see [9, Proposition 2.1] for the case of rank n).

Proposition 3.1. Let F be a reduced (s, t)-Steiner bundle on P
n, and let π1, π2 denote the

two projections from J̃(F ) ⊂ P(S) × P
n∗. Let (α,H) be a jumping pair of F, let i : S′ ⊂ S and

j : T ′ ⊂ T be the hyperplane inclusions corresponding, respectively, to α ∈ P(S) and (α,H) ∈
P(T ). If F ′ is the kernel of the natural composition F → F|H → OH defined by (α,H) (see
Lemma 2.2(iii)) then:

(i) F ′ is an (s− 1, t− 1)-Steiner bundle F ′ having a resolution

0 −→ S′ ⊗OPn(−1) −→ T ′ ⊗OPn −→ F ′ −→ 0;

(ii) the linear map ϕ′ defining F ′ (see Lemma 1.2) fits in a commutative diagram

T ∗ ϕ−→ S∗ ⊗H0(OPn(1))
↓ j∗ ↓ i∗ ⊗ id
T ′∗ ϕ′

−→ S′∗ ⊗H0(OPn(1));

(iii) J(F ) ⊂ J(F ′) ∪ π2π
−1
1 (α).
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Proof. We have the following commutative diagram

0 0 0
↓ ↓ ↓

0 −→ S′ ⊗OPn(−1) −→ T ′ ⊗OPn −→ F ′ −→ 0
↓ ↓ ↓

0 −→ S ⊗OPn(−1) −→ T ⊗OPn −→ F −→ 0
↓ ↓ ↓

0 −→ OPn(−1) −→ OPn −→ OH −→ 0
↓ ↓ ↓
0 0 0

where the first column is defined by the quotient of S corresponding to α, the second column
is defined by the quotient of T corresponding to (α,H), and the first row is defined as a kernel.
This proves (i).

Taking duals, we get another commutative diagram

0 −→ F ∗ −→ T ∗ ⊗OPn −→ S∗ ⊗OPn(1) −→ 0
↓ ↓ ↓

0 −→ F ′∗ −→ T ′∗ ⊗OPn −→ S′∗ ⊗OPn(1) −→ 0

which, taking cohomology, produces (ii).
To prove (iii), consider any jumping hyperplane H1 of F and assume it is not in π2π

−1
1 (α),

so that it comes from a jumping pair (α1,H1) with α1 
= α. This jumping pair is represented
by a nonzero tensor v1 ⊗ h1 ∈ S∗ ⊗H0(OPn(1)) in the image of ϕ (where h1 is an equation of
H1). Since α1 
= α, it follows that i∗(v1) ⊗ h1 is nonzero, and it is also in the image of ϕ′, by
(ii). This implies that ([i∗(v1)],H1) is a jumping pair of F ′, so that H1 is a jumping hyperplane
of F ′, as wanted.

Remark 3.2. The idea now is that, when performing the iteration process, part (iii) of
Proposition 3.1 should provide enough information to keep track of the set of jumping pairs
until we arrive at a Steiner bundle with s = 2. There are two difficulties to do so. First of
all, some bundle in the iteration process could be nonreduced, although we could deal with
this taking its reduced summand and using Lemma 2.2(i). The main difficulty is however that
Proposition 3.1(iii) does not relate J(F ) and J(F ′) if J(F ) is contained in some π2π

−1
1 (α).

Of course this behaviour seems very unlikely (for instance, it does not hold if dim J̃(F ) =
t− n− s+ 1, as Theorem 2.8(ii) guarantees), and we could impose that it does not hold for
our original F , but still it could hold for some other Steiner bundle in the iteration process.

In the case of Steiner bundles of rank n (the one studied in [9]), which are always reduced,
this last difficulty can be avoided as follows. Any Steiner bundle F ′ in the process has rank n, so
that from Theorem 2.8(i) its set of jumping hyperplanes has dimension at most 1. Therefore, if
the projection π′

1 : J̃(F ′) → P(S′) were constant, its fibre (which is a linear space, by Example
2.5(ii)) would be either a point or a line. It cannot be a line by Theorem 2.8(ii), so that
necessarily F ′ would have only one jumping hyperplane. This is the key underlying idea in [9]
that allows even to limit the number of jumping hyperplanes when there are finitely many.

The key to deal with the first difficulty of Remark 3.2 is the following (in which we also pay
attention to jumping pairs instead of just jumping hyperplanes).

Proposition 3.3. In the situation of Proposition 3.1, set T ′
0
∗ := Imϕ′ and let F ′ = F ′

0 ⊕
(T ′/T ′

0) ⊗OPn be the decomposition of Lemma 1.3. Then we have the following.
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SCHWARZENBERGER BUNDLES ON THE PROJECTIVE SPACE 711

(i) The projection from the linear subspace π−1
1 (α) ⊂ P(T ) is the map pr(α,H) : P(T ) →

P(T ′
0) induced by the composition T ′

0
j∗
−→T ′ ϕ′

−→T . In particular, dimT ′
0 = t− 1 − dimπ−1

1 (α).
(ii) If prα : P(S) → P(S′) denotes the projection from α, for any (α1,H1)) ∈ J̃(F ) with

α1 
= α, we have the equality

pr(α,H)(α1,H1) = (prα(α1),H1)

and this is a jumping pair of F ′ and F ′
0.

(iii) The variety J̃(F ′
0) contains the image under pr(α,H) of any component of J̃(F ) ⊂ P(T )

not contained in π−1
1 (α).

(iv) The variety Σ(F ′
0) contains the image under prα of any component of Σ(F ) ⊂ P(S)

different from {α}.

Proof. It follows readily from the commutative diagram of Proposition 3.1(ii). For example,
part (i) comes from the fact that the subspace of T ∗ corresponding to π−1

1 (α) is the kernel of
(i∗ ⊗ id) ◦ ϕ = ϕ′ ◦ j∗. Part (ii) is now the interpretation of the diagram of Proposition 3.1(ii)
(recall that F ′ and F ′

0 has the same jumping pairs, by Lemma 2.2(i)). Finally, parts (iii) and
(iv) are proved from (ii) (in fact, it is the same proof as the one of Proposition 3.1(iii)).

The next proposition shows that, for Steiner bundles of arbitrary rank, the second difficulty
of Remark 3.2 can be overcome with the same ideas as in the case of rank n if we assume that
the set of jumping pairs has the maximal dimension allowed by Theorem 2.8(i) (observe that,
in this case, the bundle is necessarily reduced, by Theorem 2.8(iii)).

Proposition 3.4. Let F be an (s, t)-Steiner bundle on P
n with s � 2 and such that J̃(F )

has dimension t− n− s+ 1. Let J̃0 be a component of J̃(F ) of maximal dimension and fix
(α,H) ∈ J̃0. Then, if F ′ is the Steiner bundle constructed in Proposition 3.1 and F ′

0 is its
reduced part, the following hold.

(i) The image of both J̃0 and J̃(F ) under the projection pr(α,H) from π−1
1 (α) has dimension

t− n− s+ 1 − dimπ−1
1 (α).

(ii) The variety J̃(F ′
0) has dimension t− n− s+ 1 − dimπ−1

1 (α).
(iii) If J̃(F ′

0) is irreducible, then:
(a) J̃(F ′

0) is the image of J̃(F ) under the projection pr(α,H) from π−1
1 (α);

(b) J̃(F ) is irreducible;
(c) J(F ) = J(F ′

0);
(d) Σ(F ′

0) is the image of Σ(F ) under the inner projection prα from α.

Proof. Since, by Theorem 2.8(i), J̃(F ′
0) has dimension at most dimT ′

0 − n− (s− 1) + 1
and, by Proposition 3.3(i), dimT ′

0 = t− 1 − dimπ−1
1 (α), part (i) will follow if we prove that

the image of J̃0 under pr(α,H) has dimension at least t− n− s+ 1 − dimπ−1
1 (α). Assume by

contradiction that J̃0 drops dimension by dimπ−1
1 (α) + 1 when projecting from π−1

1 (α). This
means that J̃0 is a cone with vertex π−1

1 (α). Since any line in the cone is contained in a fibre
of π1 or π2 (Example 2.5(iii)), it follows that J̃0 is contained in π−1

1 (α) ∪ π−1
2 (H). But J̃0 is

irreducible, so that it is contained in π−1
1 (α) or π−1

2 (H), which contradicts Theorem 2.8(ii).
To prove (ii), we have, on the one hand, that Proposition 3.3(iii) implies that J̃(F ′) contains

the image of J̃0 under pr(α,H), which has dimension t− n− s+ 1 − dimπ−1
1 (α), by (i). On

the other hand, Theorem 2.8(i) implies dim J̃(F ′) � t− n− s+ 1 − dimπ−1
1 (α), so that (ii)

follows.
To prove (iii), observe first that J̃(F ) cannot have any component contained in π−1

1 (α).
Indeed π−1

1 (α) is contained in J̃0, since otherwise it would be contained in another component
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712 ENRIQUE ARRONDO

of J̃(F ). But then such a component would meet J̃0 at least at the point (α,H), implying that
(α,H) is a singular point of J̃(F ), contradicting Theorem 2.8(iii).

I claim now that J̃(F ′) coincides with the image of both J̃0 and J̃(F ) under pr(α,H). Indeed,
both images are contained in J̃(F ′) by Proposition 3.3(iii) (and the above observation), and
on the other hand they have dimension t− n− s+ 1 − dimπ−1

1 (α), by (i). Since, by (ii), J̃(F ′)
has also dimension t− n− s+ 1 − dimπ−1

1 (α), its irreducibility proves the claim, and also
part (a).

To prove part (b), assume for contradiction that J̃(F ) has another component J̃1 different
from J̃0, and fix any point (α1,H1) ∈ J̃1 \ J̃0. By our previous claim, the image of (α1,H1)
under pr(α,H) is also in the image of J̃0. In particular, there is a line Δ trisecant to J̃(F ), passing
through (α1,H1) and meeting π−1

1 (α). Since J̃(F ) is cut out by quadrics (Example 2.5(i)), it
follows that Δ is contained in J̃(F ). But Δ 
⊂ J̃0, so that there is another component of J̃(F )
containing Δ. Therefore J̃0 meets that component at the point (α,H), so that (α,H) is a
singular point of J̃(F ) that is in J̃0. This contradicts once more Theorem 2.8(iii), hence (b)
holds.

We prove part (c) by showing the double inclusion. Observe first that the irreducibility
of J̃(F ) implies the irreducibility of J(F ). Thus, Proposition 3.1(iii) implies, together with
Theorem 2.8(ii), that J(F ) is contained in J(F ′), which is J(F ′

0) by Lemma 2.2(i), so that
we are left to prove the other inclusion. Since pr(α,H)(J̃(F ) \ π−1

1 (α)) is dense in J̃(F ′
0), also

π′
1(pr(α,H)(J̃(F ) \ π−1

1 (α))) is dense in J(F ′
0), so it is enough to prove that any element of it is

also in J(F ). We thus take H ′ ∈ J(F ′
0) for which there exists α′ ∈ P(S′) such that (α′,H ′) =

pr(α,H)(α1,H1) for some (α1,H1) ∈ J̃(F ) with α1 
= α. Since pr(α,H)(α1,H1) = (prα(α1),H1)
by Proposition 3.3(ii), it follows that H ′ = H1, hence H ′ ∈ J(F ), as wanted.

Finally, part (d) is proved also by double inclusion. First, observe that Σ(F ) is irreducible by
(b), so that it cannot be just {α} by Theorem 2.8(ii). Therefore, Proposition 3.3(iv) implies that
Σ(F ′

0) contains the image of Σ(F ) under prα. Reciprocally, take any α′ ∈ Σ(F ′
0). As before,

we can assume that there exists H ′ ∈ J(F ′
0) such that (α′,H ′) = pr(α,H)(α1,H1) for some

(α1,H1) ∈ J̃(F ) with α1 
= α. Hence Proposition 3.3(ii) implies α′ = prα(α1). Since obviously
α1 ∈ Σ(F ), the result follows.

Remark 3.5. Exactly in the same way as in Proposition 3.1, one could construct from F
and a jumping pair (α,H) the Steiner bundle defined by T ′∗ → S∗ ⊗H0(OH(1)). This time we
get an (s, t− 1)-Steiner bundle F ′ on H and the same results of this section hold by permuting
the roles of J(F ) and Σ(F ). In particular, if J̃(F ) has the maximal dimension allowed by
Theorem 2.8(i), then also J̃(F ′) has the maximal dimension allowed by Theorem 2.8(i); and if
J̃(F ′) is irreducible, then Σ(F ) = Σ(F ′). We will not prove it, since it is done exactly in the
same way.

Before stating and proving our main result, we include, for the reader’s convenience, the
following easy lemma about varieties of minimal degree that we will need. By variety of minimal
degree we mean a nondegenerate irreducible variety in a projective space such that its degree
minus its codimension is 1. We recall (see, for example, [4, Theorem 19.9]) that a smooth
variety of minimal degree is either a quadric, a rational normal scroll (this includes the whole
projective space and rational normal curves) or a Veronese surface in P

5.

Lemma 3.6. Let X ⊂ P
N be a proper smooth irreducible projective variety that is

cut out by quadrics. Assume that X contains an r-dimensional linear subspace Λ such
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SCHWARZENBERGER BUNDLES ON THE PROJECTIVE SPACE 713

that the projection of X from Λ is a subvariety X ′ ⊂ P
N−r−1 of minimal degree with

dimX ′ = dimX − r. Then also X is a variety of minimal degree.

Proof. The inequality dimX ′ > dimX − r − 1 implies X is not a cone with vertex Λ, so
that there exists a point x ∈ Λ such that the line spanned by x and a general point of X is not
contained in X. Since X is cut out by quadrics, such a line cannot be trisecant to X, and hence
the projection from x sends X birationally to some X1 ⊂ P

N−1. Therefore both the degree and
codimension of X1 drop by one with respect to those of X (recall that x is, by hypothesis, a
smooth point of X), and thus X is a variety of minimal degree if and only if X1 is.

On the other hand, if Λ1 is the (r − 1)-dimensional image of Λ, then X ′ is the image of X1

under the linear projection from Λ1. Since dimX ′ = dimX1 − r, this means that X1 is a cone
with vertex Λ1. Hence now X ′ has the same degree and codimension as X1, so that X1 is a
variety of minimal degree because X ′ is. As observed before, this completes the proof.

Theorem 3.7. Let F be an (s, t)-Steiner bundle on P
n with s � 2 and such that J̃(F ) has

dimension t− n− s+ 1. Then J̃(F ) is irreducible and F is one of the Schwarzenberger bundles
of Examples 1.7, 1.8, 1.9 or 1.10.

Proof. By Proposition 3.4, we can construct an (s− 1, t− 1 − ε)-Steiner bundle F ′
0 such

that J̃(F ′
0) has dimension t− n− s+ 1 − ε. In particular, F ′

0 has the maximal dimension
allowed by Theorem 2.8(i). Iterating this process s− 2 times, we arrive at a reduced (2, t′′)-
Steiner bundle F ′′ such that J̃(F ′′) has dimension t′′ − n− s+ 1. Thus Theorem 2.8(iv) implies
that J̃(F ′′) is a smooth rational normal scroll in P

t′′−1. Since J̃(F ′′) is irreducible, it follows
from Proposition 3.4(iii) that also J̃(F ) is irreducible, that J̃(F ′′) is the image of J̃(F ) under a
series of s− 2 inner projections from different linear subspaces, and that J(F ) = J(F ′′). Since
we know that J(F ′′) is a rational normal scroll, also J(F ) is. Similarly (see Remark 3.5), we
can produce from F a reduced Steiner bundle F ′′′ on P

1, so that it follows from Theorem 2.8(v)
that Σ(F ) = Σ(F ′′′) is a rational normal scroll. On the other hand, Lemma 3.6 implies that
J̃(F ) is a variety of minimal degree. Using the classification of smooth varieties of minimal
degree, we study separately each of the three possibilities for J̃(F ) (we do not consider the
possibility of a quadric, since J̃(F ) has codimension n+ s− 2, and this is one only in the case
n = 1, s = 2, which is trivial by Theorem 2.8).

(i) If J̃(F ) is a rational normal curve (hence t = n+ s) of degree t− 1, then necessarily J̃(F ′′)
is also a rational normal curve obtained from J̃(F ) by projecting from s− 2 points on it, so
that t′′ = t− s+ 2 = n+ 2. Therefore, Theorem 2.8(iv) says that F ′′ is the Schwarzenberger
bundle of the triplet (P1,OP1(1),OP1(n)), and in particular J(F ′′) is a rational normal curve
of degree n. Since J(F ) = J(F ′′), it follows that π∗

2OPn∗(1) = OP1(n). On the other hand,
the equality OJ̃(F )(1) = OP1(n+ s− 1) implies π∗

1OP(S)(1) = OP1(s− 1). The fact that J̃(F ),
Σ(F ) and J(F ) are rational normal curves implies that the hypotheses of Lemma 2.4(iii) are
satisfied, so that we are in the case of Example 1.7 (of course, this is the case obtained in [1,
9], because we are dealing with Steiner bundles of rank n).

(ii) If J̃(F ) is a Veronese surface, then t− n− s+ 1 = 2 and t = 6. An inner projection
produces a rational normal scroll only when projecting from one or two points, so that s = 3, 4.
If s = 4, then J̃(F ′′) is a smooth quadric in P

3, so that J(F ′′) is a line. Since J(F ′′) = J(F ) and
there are no regular maps from the Veronese surface to P

1, this case is not possible. Therefore
s = 3 (hence n = 2) and J̃(F ′′) is a cubic surface scroll in P

4, so that J(F ′′) is isomorphic
to P

2. Since the map π2 : J̃(F ) → J(F ) has linear fibres, it follows that it is an isomorphism
and π∗

2OPn∗(1) ∼= OP2(1). And since the hyperplane class of J̃(F ) is OP2(2), it also follows that
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π∗
1OPn∗(1) ∼= OP2(1) and π1 is also necessarily an isomorphism. By Lemma 2.4(iii), we are in

the case of Example 1.10.
(iii) Finally, assume that J̃(F ) ⊂ P(T ) is a rational normal scroll of dimension t− n− s+ 1 >

1 (and degree n+ s− 1). Since the only nontrivial splitting of the hyperplane section h of J̃(F )
into two globally generated line bundles is

OJ̃(F )(h) = OJ̃(F )(rf) ⊗OJ̃(F )(h− rf)

for some integer r > 0 (as usual, f represents the fibre of the scroll), one of the factors must
be π∗

1OP(S)(1) and the other one must be π∗
2OPn∗(1).

Assume, for example, π∗
1OP(S)(1) = OJ̃(F )(rf) and π∗

2OPn∗(1) = OJ̃(F )(h− rf). In this case,
since J̃(F ), Σ(F ) and J(F ) are varieties of minimal degree, Lemma 2.4(iii) implies that F is
the Schwarzenberger bundle of the triplet (J̃(F ),OJ̃(F )(rf),OJ̃(F )(h− rf)). Hence

s = h0(OJ̃(F )(rf)) = r + 1,

n+ 1 = h0(OJ̃(F )(h− rf)) = t− r(t− n− s+ 1)

so that t− n− s+ 1 = t− (t− r(t− n− s+ 1) − 1) − (r + 1) + 1 and thus (r − 1)(t− n−
s) = 0, which implies r = 1, so that we are in the case of Example 1.9.

The case π∗
1OP(S)(1) = OJ̃(F )(h− rf) and π∗

2OPn∗(1) = OJ̃(F )(rf) is analogous, and we
would obtain here Example 1.8.

If we just want to study the dimension of the set of jumping hyperplanes, we have the
following.

Corollary 3.8. Let F be an (s, t)-Steiner bundle with s � 2. Then J(F ) has dimension
at most t− n− s+ 1, with equality if and only if F is the Schwarzenberger bundle of one of
the following triplets (X,L,M):

(i) X = P
1, L = OP1(s− 1), M = OP1(n);

(ii) X ⊂ P
t−1 a smooth rational normal scroll of dimension t− n− 1 and degree n+ 1

different from P
1 × P

n (that is, t 
= 2n+ 1) and L = OX(f), M = OX(h− f) (see
Example 1.9);

(iii) X = P
2, L = M = OP2(1).

Proof. The inequality follows from Theorem 2.8(i) using that dimJ(F ) � dim J̃(F ). In case
of equality, we have to remove from Theorem 3.7 the cases in which dim J(F ) < dim J̃(F ).
Observe that the case t = s+ 1 in Example 1.8 (that is, when dimJ(F ) = dim J̃(F ) = 1)
becomes the case n = 1 in Example 1.7, so that we do not need to consider it.

We also have this improvement of Re’s results in the case of line bundles.

Corollary 3.9. Let L,M be two globally generated line bundles on an irreducible
variety X, and assume that L⊗M is ample. If W is the image of the multiplication map
H0(L) ⊗H0(M) → H0(L⊗M), then dim(W ) � h0(L) + h0(M) + dim(X) − 2, with equality
if and only if the multiplication map is surjective and there is a triplet (X ′, L′,M ′) as in
Examples 1.7, 1.8, 1.9 or 1.10 such that there exists a finite map f : X → X ′ satisfying
L = f∗L′ and M = f∗M ′.

Proof. Let F be the Schwarzenberger bundle of the triplet (X,L,M). Then J̃(F ) is
the image of X via L⊗M . Since L⊗M is ample and globally generated, it follows
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that dim(J̃(F )) = dim(X). As observed in Example 1.5, the reduced summand of F is an
(h0(L),dim(W ))-Steiner bundle F0, and obviously J̃(F ) = J̃(F0). Thus the wanted inequality
is just Theorem 2.8(i) when applied to F0. In case we have equality, we know by Theorem 3.7
that F is the Schwarzenberger bundle of a triplet (X ′, L′,M ′) as in Examples 1.7, 1.8, 1.9 or
1.10, and in particular F is reduced, that is, W = H0(L⊗M). Moreover, the proof gives that
X ′ is J̃(F ), that is, the image ofX via the map f defined by L⊗M . Also, since the composition
X

f−→X ′ π1−→P(H0(L)) is the map defined by L, it follows that L = f∗π∗
1OP(H0(L))(1) = f∗L′,

and similarly we obtain M = f∗M ′.

Remark 3.10. It could seem a priori that it is possible to obtain Theorem 3.7 as a Corollary
of the corresponding result of [9] for Steiner bundles of rank n. In fact, we can always take
a general quotient T → T1 of dimension n+ s and, if K is its kernel, we get a commutative
diagram

0 0
↓ ↓

K ⊗OPn = K ⊗OPn

↓ ↓
0 −→ S ⊗OPn(−1) −→ T ⊗OPn −→ F −→ 0

|| ↓ ↓
0 −→ S ⊗OPn(−1) −→ T1 ⊗OPn −→ F1 −→ 0

↓ ↓
0 0

in which now F1 is a Steiner bundle of rank n. From this diagram, it is not difficult to see
that J̃(F1) is the intersection of J̃(F ) with P(T1). Since P(T1) has codimension t− n− s in
P(T ), it follows that dim J̃(F1) � dim J̃(F ) − t+ n+ s. Since the dimension of J̃(F1) is at
most 1 (by Theorem 2.8(i), which is in this case the result of [9]), it follows that J̃(F ) has
dimension at most t− n− s+ 1. Moreover, if equality holds, we can apply the known result
for F1 and get that J̃(F1) is a rational normal curve, so that J̃(F ) has only one component of
maximal dimension, which is a variety of minimal degree in P(T ). However, such a proof does
not exclude the possibility that J̃(F ) (or J(F )) has other components of smaller dimension,
while our proof shows the irreducibility of J̃(F ). Hence our proof actually provides a positive
answer to Question 0.2 for the Examples 1.7–1.10.

Remark 3.11. The proof of Theorem 3.7 gives an idea of the difficulty of proving a
similar result for arbitrary a, b. Independently of the fact that we were not able to find a
reasonable bound for the dimension of Ja,b(F ), the main obstacle to prove something analogous
to Theorem 3.7 is that we do not have a first induction step to apply an iteration using
Proposition 3.1. Indeed, the minimal value of s would be s = a+ 1 (see Lemma 2.7), but as
observed in Remark 2.6, a result like Theorem 2.8(iv) cannot hold because, for general values
of a, b, one expects J̃a,b(F ) to be empty, even for s = a+ 1. The same problem remains when
trying to apply the iteration process explained in Remark 3.5, since the first step should be a
Steiner bundle on P

b+1, for which we also expect J̃a,b(F ) to be empty for general values of a, b.
On the other hand, it would also be nice to generalize Theorem 3.7 to arbitrary a, b in order

to generalize the improvement of Re’s results given in Corollary 3.9 to arbitrary rank. Since
our proof for a = b = 1 is closely related to the classification of varieties of minimal degree in
the projective space, a generalization to arbitrary a, b is likely to depend on a good theory of
varieties of minimal degree in Grassmannians (see [7] for a first natural approach).
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Remark 3.12. In [8], Soares gave a natural definition of Steiner bundle on any projective
variety. It would be nice to have also the notion of Schwarzenberger bundle in her general
context. For example, to get a natural definition on Grassmannians, one could take a triplet
(X,L,M) and fix an integer r such that, for each r-dimensional subspace V ⊂ H0(M) the
natural map H0(L) ⊗ V → H0(L⊗M) is injective. Let us consider G = G(r,H0(M)), the
Grassmann variety of linear subspaces of dimension r in H0(M), and let U be the rank r
universal subbundle of G. Then there is an exact sequence of vector bundles on G:

0 −→ H0(L) ⊗ U −→ H0(L⊗M) ⊗OG −→ F −→ 0

defining F as a cokernel. This is a Steiner bundle on G in the sense of [8], so that it seems
natural to define Schwarzenberger bundles on G as the bundles obtained in this way. Of course,
when r = 1 we recover our definition of Schwarzenberger bundle on the projective space.
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Universidad Complutense de Madrid
28040 Madrid
Spain

arrondo@mat·ucm·es

D
ow

nloaded from
 https://academ

ic.oup.com
/jlm

s/article/82/3/697/918036 by guest on 09 April 2024


	1. Generalized Schwarzenberger bundles
	2. Jumping subspaces of Steiner bundles
	3. Steiner bundles with jumping locus of maximal dimension
	References

